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We study a dissipative Kerr resonator subject to both single- and two-photon detuned drives. Beyond a
critical detuning threshold, the Kerr resonator exhibits a semiclassical first-order dissipative phase
transition between two different steady states that are characterized by a π phase switch of the cavity
field. This transition is shown to persist deep into the quantum limit of low photon numbers. Remarkably,
the detuning frequency at which this transition occurs depends almost linearly on the amplitude of the
single-photon drive. Based on this phase-switching feature, we devise a sensitive quantum transducer that
translates the observed frequency of the parametric quantum phase transition to the detected single-photon
amplitude signal. The effects of noise and temperature on the corresponding sensing protocol are
addressed, and a realistic circuit-QED implementation is discussed.
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Introduction.—Phase transitions are commonly associ-
ated with strongly enhanced susceptibilities. Proximity to
phase transitions, therefore, renders systems highly sensi-
tive to external perturbations. Harnessing this augmented
sensitivity for sensing and metrology using quantum
systems [1] has been the focus of numerous recent
efforts in diverse settings, e.g., equilibrium systems [2],
PT-symmetric cavities [3], dynamical phase transitions [4],
and lasers [5]. From this perspective, quantum driven-
dissipative systems offer a fertile platform to devise such
rich sensing protocols. These systems are at the avantgarde
of contemporary research at the interface between con-
densed matter physics and quantum optics [6,7]. The
dynamics of these intrinsically nonequilibrium systems is
richer than that of their equilibrium counterparts, and
dissipative phase transitions (DPTs) between different
out-of-equilibrium phases can be controllably tuned. DPTs
can be realized in various platforms, including cold atoms
[8], trapped ions [9], superconducting circuits [10], and
exciton-polariton cavities [11].
A paradigmatic example of a nonequilibrium phase

transition occurs in driven-dissipative nonlinear Kerr oscil-
lators: In the semiclassical limit of large photon numbers
and as a function of single-photon drive detuning, this
system undergoes a first-order transition manifesting as a
bistability in photon numbers [12–16]. Applying instead a
two-photon drive, the resulting Kerr parametric oscillator
(KPO) with weak single-photon losses exhibits an addi-
tional continuous transition related to the appearance of a
parametron which can exist in either of two coherent states
of equal amplitude but π-phase shifted with respect to each
other [17–19]. At low photon numbers, these coherent
states can be recomposed into Schrödinger cat states of
opposite parities and have been proposed as a new resource
for universal quantum computation [20–22]. Concurrently,

optimization algorithms based on annealing with parame-
trons have recently been demonstrated using a classical
KPO network [23] with promising quantum extensions [24].
In this Letter, we propose a quantum sensing scheme

based on a first-order symmetry-breaking DPT. This DPT
stems from an explicit breaking of the parity symmetry by
the single-photon drive, resulting in an abrupt switching
between the coherent states. It is also characterized by a
vanishing Liouvillian spectral gap [25]. This transition is
the quantum manifestation of the classical parametric
symmetry breaking studied in Refs. [26–28]. Here, we
find that at low and intermediate photon numbers this
switching persists as a sharp crossover. Our measurement
protocol extracts the unknown amplitude of an external
coherent (or single-photon) drive (signal) from the detuning
frequency at which the KPO switches from one coherent
state to the other. Remarkably, the switching frequency
scales linearly with the amplitude of the single-photon
drive, thus realizing a quantum transducer. Such a coherent
tone depends on the actual physical realization of the KPO
and can emerge from a plethora of processes such as
microwave sources [10], external lasers [6], weak electrical
fields, optical dipole forces, spin-dependent forces [29],
etc. Furthermore, we discuss the impact of quantum noise
on the transducer’s sensitivity by simulating a heterodyne
detection protocol and by analyzing finite-temperature
effects. Our results reiterate in a quantum setting the
robustness and potential of our detection scheme. Lastly,
our scheme is operational in a wide range of parameters and
readily realizable in contemporary quantum engineered
settings, e.g., in circuit QED, where parametric driving is
already utilized for Josephson parametric amplifiers [30].
Model.—The quantum KPO [Fig. 1(a)] is described by

the Hamiltonian (ℏ ¼ 1)
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a2 þ H:c:
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in terms of the bosonic operator a and the number operator
n ¼ a†a. The KPO is parametrically pumped with strength
G, while F is the strength of the single-photon drive;
without the loss of generality, we set F to be real and
G ¼ jGj expðiθÞ. Equation (1) is written in a frame rotating
with respect to the single-photon drive frequency ωd, and,
thus, the bare cavity frequency ωc is renormalized to the
detuning Δ ¼ ωd − ωc. The parametric modulation is fixed
at 2ωd, and U is the Kerr nonlinearity. The dissipative
dynamics for the density matrix ρ is determined by the
Lindblad master equation

_ρ ¼ Lρ≡ −i½H; ρ� þ γD½a�ρþ ηD½a2�ρ; ð2Þ

where L is the Liouvillian superoperator, γ and η are,
respectively, the single- and two-photon decay rates, and
D½O�ρ ¼ OρO† − 1

2
O†Oρ − 1

2
ρO†O.

Steady state and dynamics.—When the system is subject
solely to a two-photon drive,F ¼ 0,G ≠ 0, the system has a
Z2 symmetry associated with the parity operator eiπa

†a. For a
wide range of typical experimental parameters, the steady
state is given by ρsteady ¼ cþjCþi hCþj þ c−jC−i hC−j,
where the cat states jC�i ¼ cNðjαi � j − αiÞ, with weight-
ing c�, are represented by the coherent states j � αi
with normalization cN [17,18]. Defining the Husimi
quasiprobability distribution function Qðx; pÞ ¼ ð1=πÞ
hxþ ipjρjxþ ipi, where jxþ ipi≡ jαi, the Z2 symmetry
manifests in the steady state as Qðx; pÞ ¼ Qð−x;−pÞ
[dashed lines in Fig. 1(b)]. For G≳ γ, η and a wide range
of detuning around Δ ≈ 0, the Q function is bimodal,
indicating the formation of cat states. For a large enough
jGj, the system is known to exhibit both a first-order DPT
reflecting classical bistability and a continuous DPT related
to the appearance of bimodality in the Q function [19,31].
We now investigate the interplay between the one- and

two-photon drives as their detunings are jointly varied.
Since the single-photon drive breaks the Z2 symmetry, the
coherent states j � αi contribute unequally to ρ [19]. In
Fig. 1(c), we plot the photon number hni as a function of
Δ=U. The steady-state photon number is low at large
detunings jΔ=Uj ≫ 1 and increases to a maximum at
Δ=U ≈ 10, followed by a pronounced drop [see Ⓐ in
Fig. 1(c)]. Interestingly, we observe a kink occurring at
Δ=U ≈ 0 [see Ⓑ]. This kink is a precursor to the continuous
DPT discussed earlier, which is now discontinuous due to
the symmetry-breaking F.
This feature is strongly reflected in the phase of the

cavity field Φ ¼ arctan½p=x�, where x ¼ haþ a†i and
p ¼ h−iða − a†Þi. In Fig. 1(d), we see that the phase
abruptly switches by π in the vicinity of Δ=U ≈ 0. This
phase switch stems directly from the transition between
the two modes of the parametron in the Q function.
Note that these modes are now shifted by the single-photon
drive but nonetheless remain in opposing quadrants of
the Q function [Fig. 1(b)]. The origin of this effect can be
traced back to the bifurcation physics in the classical limit
of the model [26–28].
To substantiate the link between the phase jump and

DPTs, it is instructive to look at the Liouvillian gap λADR
in the Liouvillian spectrum [Fig. 1(e)]. All eigenvalues λ
of the Liouvillian superoperator L defined in Eq. (2) have
negative real parts ReðλÞ ≤ 0, and we sort them in absolute
ascending order jReðλ0Þj ≤ jReðλ1Þj ≤ � � �. The lowest
eigenvalue λ0 ¼ 0 corresponds to ρsteady, and the
Liouvillian gap that determines the slowest decay rate to
the steady state is given by λADR ¼ Reðλ1Þ. The closing of
the Liouvillian gap indicates a DPT [25]. In Fig. 1(e), λADR

(a)
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(c)

(d)

(e)

FIG. 1. (a) Schematic representation of a KPO with non-
linearity U and loss rates γ and η subject to single- and two-
photon drives F and G, respectively. The emitted photons by the
cavity with rate κ are collected by a heterodyne detector.
(b) Steady-state Husimi Q functions at points ① and ②; cf. (c)
and (d). Dashed lines mark the contour of the F ¼ 0 Q function.
(c),(d) Photon density hni and phase Φ of the cavity field, as a
function of detuning Δ=U in the steady state (dashed blue line)
and for upsweeps (green) and downsweeps (red) of Δ=U,
obtained from Eq. (2). At large positive Δ=U, the KPO crosses
over from high hni to low hni. At Δ ≈ 0 [marked by Ⓑ] in (c), we
see a kink in the steady state hni concomitant with a π switch in
the phase (d). The kink and phase switch are also seen for
downsweeps. (e) The Liouvillian gap as a function of Δ=U and
phase θ of G. The gap vanishes at the phase-switching transition,
marking the onset of a quantum DPT. System parameters are
F=U ¼ 4, jGj=U ¼ 6, γ=U ¼ 0.5, and η=U ¼ 0.5. θ ¼ −ðπ=2Þ
in (c) and (d). Δ=U is swept linearly from Δ1=U ¼ −10 to
Δ2=U ¼ 15 and vice versa in a total sweep time ts ¼ 50=U.
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is shown as a function of the phase θ of G and Δ=U. In the
regime where the phase Φ switches abruptly, we find a
vanishingly small Liouvillian gap −10−6γ consistent with
the expected first-order transition [26–28]. Note that for
0≲ θ ≲ π the Liouvillian gap does not close, indicating
that the phase switching occurs only for −π ≲ θ ≲ 0.
We now study if the phase switching persists beyond the

steady state. This is particularly relevant for experiments,
because the detuning is typically nonadiabatically varied in
time. Simulating the full Lindblad time evolution (2) under
a linear dynamical scan of Δ, we show that both hni and Φ
manifest a hysteresis cycle [Figs. 1(c) and 1(d)]. Such
hysteretic behavior survives if the sweep duration is lower
than 1=λADR. The steady state is approached with increas-
ing sweep duration [32]. On the upsweep, only the standard
photon number drop at Δ ∝ G=U occurs. Interestingly, for
downsweeps, both a marked increase in hni at Δ=U ≈ 11
and a kink in hni concomitant with the phase switching
are seen. This is the quantum analog of the double
hysteresis recently discovered in the classical version of
our model [26–28].
The frequency at which the phase switches by π for

downsweeps is henceforth labeled by Δ�. We find that,
remarkably, Δ� ∝ F over a wide range of single-photon
drive amplitudes and relative phases [Fig. 2(b)]. Departures
from this linearity occur when F becomes comparable to
γ and η. Consubstantial behavior is seen in the classical

limit [26], but quantum fluctuations increase the linear
range. The linear relation holds for a large range of sweep
times, with minor dependences of ∂Δ�=∂F on the sweep
time ts [32]. The relation F ∝ Δ� originating from a phase-
switching DPT is the key result of our work. This result can
now be exploited to develop a quantum transducer for
measuring forces.
Quantum transduction protocol.—To describe a realistic

measurement of Φ, we simulate continuous observations of
x and p as realized in heterodyne detection schemes [36].
The time evolution of ρ in the presence of the detector can
be described by the stochastic master equation

dρ ¼ −i½H; ρ�dtþ ðγ þ κÞD½a�ρdtþ ηD½a2�ρdt

þ
ffiffiffi
κ

2

r
ðdWxH½a� þ dWpH½−ia�Þρ; ð3Þ

where H½a�ρ ¼ aρþ ρa† − tr½aρþ ρa†� and Wx;p are
Wiener processes with hWiðtÞi ¼ 0, hWiðtÞ2i ¼ t. The
measurement process effectively increases the single-
photon loss rate γ → γ þ κ, where κ is the emission rate
to the heterodyne detector. The measured values are given
by xmeas¼xþ ffiffiffiffiffiffiffiffi

2=κ
p

dWx=dt and pmeas¼pþ ffiffiffiffiffiffiffiffi
2=κ

p
dWp=dt,

leading to Φmeas ¼ arctan½pmeas=xmeas�. A sample noisy
phase measurement is shown in Fig. 2(a). Our sensing

(a)

(b) (c) (d)

FIG. 2. (a) Measurement protocol:Φ is measured via heterodyne detection (gray) andΔ� is extracted from an arctan fit (blue), which is
then used to determine Fmeas (for details, see the main text). (b) Δ�=U as a function of F obtained from the master equation (2) (orange
line) and its associated probability density function (PDF, blue) obtained from repeated heterodyne simulations (3). (c) PDF of Fmeas for
F=U ¼ 4, i.e., F=ðκ þ γÞ ¼ 2.67; histogram from the simulated heterodyne detection (blue) and a fit to a Gaussian (blue line), with
mean F̄meas=ðκ þ γÞ ¼ 2.79 ≈ F=ðκ þ γÞ and standard deviation ΔFmeas

=ðκ þ γÞ ¼ 1.1. The dashed line (orange) is the prediction based
on the stochastic switching in the Husimi Q function; cf. Eq. (5). κ=U ¼ 1 and the other parameters are the same as in Fig. 1.
(d) Quantum Fisher information of estimating F in the steady state (6) as a function ofΔ=U (solid lines) [32]. Note the prominent peak at
Δ ¼ Δ� ≈ 0 and a smaller one at Δ=U ≈ 10, corresponding to the crossovers Ⓐ and Ⓑ in Figs. 1(c) and 1(d). Both features vanish at
sufficiently large temperatures T. For comparison, the results for G ¼ U ¼ 0 (harmonic oscillator) at T ¼ 0 are plotted (dashed). The
main peak is modulated by the resonances in the system [19,35]. Parameters are chosen as F=U ¼ 4.5, jGj=U ¼ 3, γ=U ¼ 3, and η ¼ 0.
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protocol works as follows [Fig. 2(a)]: (I) ΔðtÞ is varied in a
downsweep, and the phase Φmeas is recorded; (II) to extract
Δ� from the noisy phase profile, we fit ΦmeasðΔÞ ¼
arctan½AðΔ − Δ�Þ� þ C with fitting parameters Δ�, A,
and C; (III) the driving strength Fmeas is then obtained
using the quasilinear relation to Δ� [Fig. 2(b)]. Repeating
the protocol multiple times yields a probability density
function (PDF) for Δ�. It matches the result from the
averaged master equation (2), demonstrating the robustness
of our scheme against quantum noise from continuous
measurements. Making use of the linear relation, the PDF
for Δ� can be translated into a PDF for Fmeas [Fig. 2(c)].
The distribution can be approximated by a Gaussian with
standard deviation ΔFmeas

¼ 1.1ðκ þ γÞ that marks the
intrinsic quantum noise uncertainty that limits our meas-
urement resolution. The simulations of the heterodyne
detection were carried out with QuTiP [34].
We now show that the PDF obtained from the heterodyne

detection can also be determined from the master equa-
tion (2) with γ → γ þ κ. First, the HusimiQ function can be
interpreted as a probability density for continuous mea-
surements [37–40]. As the Q function changes quadrant
across the phase switch at Δ ¼ Δ� [Fig. 1(b)], we introduce
the following probabilities:

PΦ−
¼

Z þ∞

−∞
dp

Z
0

−∞
dxQðx; pÞ ð4Þ

and PΦþ ¼ 1 − PΦ−
, where PΦ−ðþÞ is the probability of

measuring the phase in the left (right) half plane. Note that,
when Δ is varied in time, the Husimi Q function and the
corresponding PΦ� are time dependent. Let Pi

m denote the
probability to measure the phasem ¼ Φ� at time step i and
Pi→iþ1

m→n the probability to transition from phase m ¼ Φ� to
phase n ¼ Φ∓ between time steps i and iþ 1. Making the
physically reasonable assumption that the system transi-
tions preferably to the steady state, we obtain the following
simple expression for the transition probability to switch
from Φ− to Φþ between the time steps i and iþ 1 [32]:

Pi→iþ1
tr ¼ Pi

Φ−
− Piþ1

Φ−
: ð5Þ

Consequently, for a linear sweep of the detuning,
PtrðtÞ ∝ Ptr½ΔðtÞ�≡ P½Δ� ¼ ΔðtÞ�. Making use of the
linear relation F ∝ Δ� [Fig. 2(b)], we obtain the PDF of
the measured F, PðFmeasÞ ∝ PðΔ�Þ. This simple result
qualitatively agrees with the full PDF obtained from the
heterodyne simulation [Fig. 2(c)]. When F is decreased to
very low values, the contributions of both parametron
modes to ρ become comparable and, consequently, strongly
reduce the sensitivity of our protocol. Moreover, in this
limit the approach based on Eq. (5) breaks down.
We note that F is the quantum optical equivalent of a

classical mechanically oscillating force acting on a har-
monic oscillator in the rotating-wave approximation [29].

The measurement protocol discussed here could thus be
extended to mechanical forces as well. A candidate state-
of-the-art system for force sensing is a laser-trapped
nanoparticle, which can be parametrically driven [41].
We obtain the following parameters for our model:
κ ¼ 2.5 mHz, η¼1.3mHz, G ¼ 15 mHz, U ¼ 2.5 mHz,
mass m ¼ 3 × 10−18 kg, and eigenfrequency ω0 ¼
2.5 × 105 Hz. Simulating Eq. (3), we obtain the PDF for
Fmeas, which gives the sensitivity defined as S ¼
ΔF

ffiffiffiffi
ts

p ¼ 15 yN=
ffiffiffiffiffiffi
Hz

p
. The sensitivity can be further

improved by reducing η as well as increasing jGj.
This is very competitive with state-of-the-art proposals
for weak force measurements using quantum noise limited
detectors [42]. Furthermore, a hallmark of our protocol is
its robustness to the ubiquitous readout noise present in any
measuring scheme [28]. This is attributable to the fact that
the protocol depends on a π jump in the phase and not
on any particular value of the phase. For completeness, we
perform a quantitative analysis on the impact of readout
noise and find that our sensing scheme is superior to
standard linear force sensing schemes by a factor of ∼2 in
the signal-to-noise ratio [32]. This insensitivity to readout
noise makes our method especially relevant for detecting
weak drives.
Classical noise.—To substantiate the robustness of our

proposal, we now investigate the influence of finite temper-
ature on the phase switching in the KPO. Temperature can
induce random switching between the parametron modes,
thus potentially degrading the fidelity of the sensor. To
quantify this, we include an additional dissipative process
in the master equation such that _ρ¼−i½H;ρ�þγð1þnthÞ
D½a�ρþγnthD½a†�ρ with nth ¼ nthðβωcÞ the thermal num-
ber of photons at the real frequency of the KPO ωc,
β ¼ kBT, and T the temperature of the environment. For
simplicity, we assume η ¼ 0, since the dominant noise
channel is typically single-photon loss [20]. A useful
measure to quantify the sensitivity of our protocol for
various temperatures is the quantum Fisher information
(QFI). It is used to analyze phase transitions [4,5,43–45]
and provides a measure of the variance of parameter
estimations in quantum sensing and metrology [46,47].
Since our sensing scheme relies on a phase transition, the
QFI of the steady state ρ is particularly appropriate for
investigating the role of temperature on the quantum
transducer. The QFI quantifies the change of the steady-
state density matrix ρ ¼ P

i λijψ ii hψ ij with respect to
variations in the parameter to be estimated and, in our
case, takes the form defined as

IF½ρ� ¼ 2
X

ij;λiþλj≠0

j hψ ij∂ρ=∂Fjψ ji j2
λi þ λj

; ð6Þ

for the estimation of F.
In Fig. 2(d), we present our results for the temperature-

dependent QFI for another state-of-the-art KPO realized in
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circuit QED. Using circuit-QED parameters ωc ¼ 7.5 ×
2π GHz and U ¼ 25 kHz [20], we see that the QFI at
T ¼ 0 (blue) exhibits two sharp peaks in correspondence
with the crossovers discussed in Fig. 1. Note that the QFI is
largest around Δ ¼ Δ� ∼ 0, where the phase switches,
while the usual bistability transition where the photon
number jumps at larger Δ exhibits a lower QFI. This shows
the high information content in the vicinity of the DPT.
The QFI of our sensing scheme is, therefore, substantially
higher than that of the standard linear force sensing with the
linear oscillator (dashed blue). The QFI progressively
decreases with the temperature, indicating an increasing
lower bound for the force estimation variance ΔF. This
bound, however, remains remarkably low for the typical
operating temperature of circuit-QED devices, T ≈ 20 mK.
This illustrates the potency of our sensing protocol based
on a DPT for sensitive measurements.
Outlook.—We have proposed a quantum sensing scheme

that relies on the heightened sensitivity of driven DPTs.
Our transduction scheme is widely realizable in contem-
porary quantum engineered devices, including optical
[6,7], mechanical [41,48], and electronic [10,20] platforms.
A key ingredient for our proposal relies on the control of
single- and two-photon drives, which are readily accessible
in such systems using standard nonlinear wave-mixing
techniques [49]. Optimizing the Kerr nonlinearity and the
two-photon drive can further improve the protocol. Our
work opens interesting perspectives in studying the inter-
play of sensing and entanglement in networks of KPOs
vis-à-vis synchronization and other collective many-body
effects [50–53].
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